Abstract

In this research, a set of novel models based on field effect transistor (FET) structure using graphene have been proposed with the current–voltage (I–V) characteristics of graphene employed to model the sensing mechanism. It has been observed that the graphene device experiences a drastic increase in conductance when exposed to Escherichia coli bacteria at 0– cfu/mL concentrations. Hence, simplicity of the structure, fast response rate and high sensitivity of this nanoelectronic biosensor make it a more suitable device in screening and functional studies of antibacterial drugs and an ideal high-throughput platform that can detect any pathogenic bacteria. Accordingly, the proposed model exhibits a satisfactory agreement with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call