Abstract

The objective of this study is to investigate analytically the effectiveness of different rehabilitation patterns in upgrading the seismic performance of existing non-ductile reinforced concrete (RC) frame structures. The study investigates the performance of two RC frames (with different heights representing low- and high-rise buildings) with or without masonry infill when rehabilitated and subjected to three types of ground motion records. The ground motion records represent earthquakes with low, medium and high frequency contents. Three models were considered for the RC frames; bare frame, masonry-infilled frame with soft infill, and masonry-infilled frame with stiff infill. Four rehabilitation patterns were studied, namely: (1) introducing a RC shear wall, (2) using steel bracing, (3) using diagonal FRP strips (FRP bracings) in the case of masonry-infilled frames, and (4) wrapping or partially wrapping the frame members (columns and beams) using FRP composites. Incremental Dynamic Analysis was conducted for the studied cases. The seismic performance enhancement of the studied frames is evaluated in terms of the maximum applied peak ground acceleration resisted by the frames, maximum inter-storey drift ratio, maximum storey shear-to-weight ratio and energy dissipation capacity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call