Abstract

Knowledge of the contact stress between roll and strip is a critical factor in modern, high-speed rolling mills. Previously two inverse analytical methods have been developed to determine the elastic contact stress on the one hand and the heat flux or the temperature in the whole roll (and especially at the surface) on the other hand, by measuring the stress tensor inside the roll body with fibre optics and by measuring the temperature with a thermocouple fully embedded at only one point inside the roll. However measurements done by fibre optics take into account the elastic stress and the thermal stress. However the contact stress was determined under isothermal assumption, which is strongly incorrect for hot rolling conditions. In this paper, the coupled thermoelastic problem is solved analytically using the theorem of superposition and the expression of the temperature field exhibited previously. A significant improvement of the accuracy of the inverse method for reconstructing the contact stress is observed by taking into account thermal stress. Hot rolling simulation is given to demonstrate this result. The computation time is studied to rapidly optimise the industrial parameters during the rolling process, and considering that both inverse methods have been run, the computation of thermal stress does not cost significant additional CPU times.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.