Abstract

We present an analytic computation of Detweiler's redshift invariant for a point mass in a circular orbit around a Kerr black hole, giving results up to 8.5 post-Newtonian order while making no assumptions on the magnitude of the spin of the black hole. Our calculation is based on the functional series method of Mano, Suzuki and Takasugi, and employs a rigorous mode-sum regularization prescription based on the Detweiler-Whiting singular-regular decomposition. The approximations used in our approach are minimal; we use the standard self-force expansion to linear order in the mass ratio, and the standard post-Newtonian expansion in the separation of the binary. A key advantage of this approach is that it produces expressions that include contributions at all orders in the spin of the Kerr black hole. While this work applies the method to the specific case of Detweiler's redshift invariant, it can be readily extended to other gauge invariant quantities and to higher post-Newtonian orders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.