Abstract
In particle physics, scalar potentials have to be bounded from below in order for the physics to make sense. The precise expressions of checking lower bound of scalar potentials are essential, which is an analytical expression of checking copositivity and positive definiteness of tensors given by such scalar potentials. Because the tensors given by general scalar potential are fourth-order and symmetric, our work mainly focuses on finding precise expressions to test copositivity and positive definiteness of fourth-order tensors in this paper. First of all, an analytically sufficient and necessary condition of positive definiteness is provided for fourth-order 2-dimensional symmetric tensors. For fourth-order 3-dimensional symmetric tensors, we give two analytically sufficient conditions of (strictly) copositivity by using proof technique of reducing orders or dimensions of such a tensor. Furthermore, an analytically sufficient and necessary condition of copositivity is showed for fourth-order 2-dimensional symmetric tensors. We also give several distinctly analytically sufficient conditions of (strict) copositivity for fourth-order 2-dimensional symmetric tensors. Finally, these results may be applied to check lower bound of scalar potentials, and to present analytical vacuum stability conditions for potentials of two real scalar fields and the Higgs boson.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have