Abstract
This paper presents a set of gaskinetic solutions to the problem of unsteady collisionless round plume development: startup and development to a steady flow; steady flow; and shutting down from a steady flow. This can find applications in studying similar transient plume flows from space propulsion devices. Different from many past studies, here we consider the general situation that the average exit gas speed can be larger than zero, and detailed geometry of the nozzle exit radius is included. A fundamental space–velocity–time relation is adopted in this study and it plays a crucial role to obtain the complete flowfield properties of density, velocity, pressure and temperature. This study reveals that there are some internal complementary relations on density and momentum among these three processes. The results involve complex integrations involving factors of time, geometry, and specific speed ratio. Several numerical simulations with the direct simulation Monte Carlo method validate these analytical exact results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.