Abstract

We demonstrate the influence of enhancing the dielectric film used to form the gate in complimentary MOS circuits, designed for high temperature operation. The data show that the characteristics of both n-MOS and p-MOS capacitors and transistors have degraded capacitance characteristics in terms of the trapped charge in the dielectric, although the interface state density is dictated by the underlying stub oxide, at around 5×1012 cm-2eV-1. The use of a deposited oxide also reduces the variability in the critical electric field in the oxide, whilst maintaining a value of approximately 10MV cm-1. The channel mobility extracted from n-and pMOS transistors fabricated alongside the capacitors showed similar values, of approximately 3.8 cm2V-1s-1, which are limited by the high doping level in the epilayers used in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.