Abstract

In this work, a sample preparation method based on ultrasound-assisted extraction of trace metals from a variety of biological and environmental matrices using a cup-horn sonoreactor is described. Diluted acids (HNO 3, HCl and HF) and oxidants (H 2O 2) were tried for extraction, the extracts being directly analyzed by electrothermal-atomic absorption spectrometry. The cup-horn sonoreactor combines the advantages of probe and bath sonicators, allowing a variety of conditions to be used for metal extraction from troublesome matrices. This system facilitates the use of HF to destroy the silicate lattice, application of simultaneous treatments of up to six samples and short treatment times. Quantitative metal recoveries are achieved from different matrices (animal and vegetal tissues, soil, sediment, fly ash, sewage sludge) under a set of extraction conditions ranging from the use of 3 min sonication time and 3% volume/volume HNO 3 for some animal tissues to 40 min sonication time along with 5% volume/volume HNO 3 + 20% volume/volume HF for sediment. Vegetal matter required the use of 5% volume/volume HNO 3 + 5% volume/volume HF for extraction of some elements. Ultrasound-assisted extraction of Cd, Mn, Pb, Ni and Cr from 16 certified reference materials representing a variety of biological and environmental matrices using the cup-horn sonoreactor is evaluated. Cd, Pb and Mn are more easily extracted from most certified reference materials (CRMs) than Cr and Ni and less stringent conditions can be chosen for the former metals. Metal extractability follows the order of difficulty: animal tissue < vegetal tissue < soil, fly ash, sewage sludge < sediment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.