Abstract

X-ray microanalysis and electron energy loss spectroscopy of thin foils constitute the important techniques of high resolution chemical analysis using the electron microscope. The technique of x-ray microanalysis is discussed in this paper with particular emphasis on the study of aluminium alloys using a dedicated scanning transmission electron microscope (stem).The principle of determining chemical composition from observed x-ray peak intensities including the absorption of x-rays and beam broadening in thin foils are considered. The accuracy of peak intensity measurement and detection limits in x-ray microanalysis are illustrated with reference to Al-Mn alloys. The Cliff-Lorimer (k) factors for manganese, iron and copper with respect to aluminium were obtained from standard samples. Identification of phases in 1100 and 1200 aluminium and 3008 (Al-Mn-Zr) alloy were carried out from measured intensities of x-ray peaks. The experimental results emphasize the value of developing techniques for extracting the particles from the aluminium matrix. The transition phases formed in Al-6%Zn-3%Mg and Al-4% Cu were investigated by micro-diffraction and x-ray microanalysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.