Abstract
An analytical model for the drain current above threshold voltage, based on an exponential energy distribution of band tail states, has been applied to bottom-gated nanocrystalline silicon (nc-Si) thin-film transistors (TFTs). Analysis of the model shows that the slope of the exponential band tails determines the behavior of the device current-voltage characteristics. Comparison with experimental data shows that few fundamental model parameters, related to the material quality and different physical effects, can be used to describe consistently both output and transfer characteristics of nc-Si TFTs over a wide range of channel lengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.