Abstract

This paper introduces and investigates a novel Spherical Flexure (SF), specifically conceived for application on spherical compliant mechanisms. The flexure features an arc of a circle as a centroidal axis and an annulus sector as cross-section, circle and annulus having a common center coinciding to that of the desired spherical motion. In this context, each element of the SF spatial compliance matrix is analytically computed as a function of both flexure dimensions and employed material. The theoretical model is then validated by relating analytical data with the results obtained through three-dimensional Finite Element Analysis. Finally, SFs are compared to Circularly Curved-Beam Flexures (CCBFs) in terms of parasitic motions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call