Abstract

We introduce an analytical approach to describe the multi-state lasing phenomenon in quantum dot lasers. We show that the key parameter is the hole-to-electron capture rate ratio. If it is lower than a certain critical value, the complete quenching of ground-state lasing takes place at high injection levels. At higher values of the ratio, the model predicts saturation of the ground-state power. This explains the diversity of experimental results and their contradiction to the conventional rate equation model. Recently found enhancement of ground-state lasing in p-doped samples and temperature dependence of the ground-state power are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.