Abstract
The continuous increase in the demand for electricity makes it necessary to modernize or build new transmission lines. This, in turn, results in research that is still being carried out on the optimal use of power cables. In the paper, an improved analytical method for the determination of the current rating of power cables was proposed. The method for determining the ampacity of the power cable presented in the IEC standard assumes that power losses in the phase conductors and screens are determined by taking into account skin and the proximity effects on the basis of tabulated coefficients. The methodology proposed in the paper is based on the method presented in the IEC standard, but the power losses in the conductive elements of the cable are determined analytically, which offers higher accuracy. In order to validate the analytical method proposed in this paper, numerical calculations based on the finite element method with very fine mesh were also performed. Exemplary calculations carried out for three types of cables with use of the proposed method, IEC standard and finite elements showed very good agreement in the results. The proposed method requires more computational effort, but it offers more accurate results than the IEC standard and can be used when higher accuracy is required. It can also serve as a reference point for simplified calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.