Abstract
The cooperative resonance fluorescence steady state is discussed within the context of an operator master equation which conserves total pseudospin. Emphasis throughout is on quantum fluctuations and their significance in relation to a background of factorised dynamics. Atom-atom correlations are shown to play a fundamental role for systems driven beyond the linear regime. Use of the atomic coherent state representation yields a Fokker-Planck description closely allied to the dynamics for a classical angular momentum oscillator. For intense incident fields the quantum-mechanical steady state is understood in terms of diffusion both around and between classical trajectories on the Bloch sphere. In the limit of infinite systems simple closed-form expressions for steady-state features are derived. Coherent and incoherent fluorescent intensities are obtained together with the second-order correlation function for fluorescent light. Specific features are illustrated by numerical results for systems of from two to fifty atoms.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have