Abstract
AbstractMany gravity driven flows can be modelled as homogeneous layers of inviscid fluid with a hydrostatic pressure distribution. There are examples throughout oceanography, meteorology, and many engineering applications, yet there are areas which require further investigation. Analytical and numerical results for two-layer shallow-water formulations of time dependent gravity currents travelling in one spatial dimension are presented. Model equations for three physical limits are developed from the hydraulic equations, and numerical solutions are produced using a relaxation scheme for conservation laws developed recently by S. Jin and X. Zin [6]. Hyperbolicity of the model equations is examined in conjunction with the stability Froude number, and shock formation at the interface of the two layers is investigated using the theory of weakly nonlinear hyperbolic waves.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have