Abstract

This paper discusses on the penetration of high velocity projectiles through aluminium–polyurea composite layered plate systems. An analytical model has been proposed to predict the residual velocity of aluminium–polyurea composite plates, and validated with both experimental and numerical investigations. Full metal jacket (FMJ) projectiles (5.56mm×45mm), corresponding to NATO standard SS109, were fired at the aluminium–polyurea composite layered plate systems from a distance of 10.0m at a fixed velocity of 945m/s. Four different composite plate configurations were used with thicknesses varying from 16 to 34mm. Each configuration consisted of six specimens. Residual velocities for each individual test were recorded. Numerical simulations of the penetration process have been performed using advanced finite element code LS-DYNA®. The well-established Johnson–Cook and Mooney–Rivlin material models were used to represent the stress–strain behaviour of aluminium and polyurea in the numerical analysis. The analytical and numerical models provided good approximations for the residual velocities measured during the experimental tests. Polyurea layers contributed positively towards the reduction of residual velocity of the projectile in composite plate systems. In addition, ballistic limit curves for different composite systems have been established based on the validated models. As the results showed that polyurea contributes positively towards the reduction of residual velocity of projectiles, the findings of this study can be effectively used for the similar applications in future armour industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call