Abstract
The mathematical complexity experienced when applying cable theory to arbitrarily branched dendrites has lead to the development of a simple representation of any branched dendrite called the equivalent cable. The equivalent cable is an unbranched model of a dendrite and a one-to-one mapping of potentials and currents on the branched model to those on the unbranched model, and vice versa. The piecewise uniform cable, with a symmetrised tri-diagonal system matrix, is shown to represent the canonical form for an equivalent cable. Through a novel application of the Laplace transform it is demonstrated that an arbitrary branched model of a dendrite can be transformed to the canonical form of an equivalent cable. The characteristic properties of the equivalent cable are extracted from the matrix for the transformed branched model. The one-to-one mapping follows automatically from the construction of the equivalent cable. The equivalent cable is used to provide a new procedure for characterising the location of synaptic contacts on spinal interneurons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.