Abstract

A movable disc-like wire probe electrode placed inside the electrospray (ES) capillary was used to measure currents flowing within the ES device for the first time. Currents were measured between the wire probe and the ES capillary. Current maps revealing measured current versus wire probe position were generated for a variety of solution conditions in the positive and negative ion modes and are compared to potential maps. The electrospray device was found to subsist on highly stable total currents; this current regulator aspect of the ES device showed remarkable resiliency regardless of the proportion of current produced at the wire probe electrode versus the ES capillary. However, kinks observed in the current and potential maps are attributed to adsorbed air participating in electrochemical reactions, and turbulence in solution flow in the region of the Taylor cone. From differential electrospray emitter potential (DEEP) maps, current maps, and cyclic voltammetry experiments performed at different wire probe locations, evidence is provided for separate regimes of current flow in the bulk solution and in the thin "skin" of highly conductive electrolyte constituting the outer surface (air interface) of the Taylor cone. Current maps reveal that current is drawn more evenly along the length of the ES capillary when solutions are highly conductive, in agreement with previous results for DEEP maps. In less conductive solutions, the area close to the capillary exit contributes more heavily to current production. Evidence that contaminant participation in electrochemical processes occurring within the electrospray device can be largely responsible for production of the excess charge in ES droplets is also provided. These investigations complement previous DEEP mapping studies to further elucidate the details of the electrochemical processes occurring within the electrospray device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.