Abstract

<p class="MsoNormal" style="text-align: justify;"><span style="font-family: 'Century Gothic', sans-serif; font-size: 8pt; letter-spacing: -0.1pt;"><span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">This article presents an analysis and discussion on the performance of a circuit-based model for Compact Fluorescent Lamps (CFL) <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">in a 120V 60Hz power grid. This model is proposed and validated in previous scientific literature for CFLs in 230V 50Hz systems. <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">Nevertheless, the derivation of this model is not straightforward to follow and its performance in 120V 60Hz systems is a matter of <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">research work. In this paper, the analytical derivation of this CFL model is presented in detail and its performance is discussed when <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">predicting the current of a CFL designed to operate in a 120V 60Hz electrical system. The derived model is separately implemented <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">in both MATLAB<span style="font-family: OptimaLTStd; font-size: 5pt; color: #231f20; font-style: normal; font-variant: normal;">® <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and ATP-EMTP<span style="font-family: OptimaLTStd; font-size: 5pt; color: #231f20; font-style: normal; font-variant: normal;">® <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">software using two different sets of parameters previously proposed for 230V 50Hz CFLs. These <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">simulation results are compared against laboratory measurements using a programmable AC voltage source. The measurements <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and simulations considered seven CFLs 110/127V 60Hz with different power ratings supplied by a sinusoidal (not distorted) voltage <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">source. The simulations under these conditions do not properly predict the current measurements and therefore the set of parameters <span style="font-family: OptimaLTStd; font-size: 9pt; color: #231f20; font-style: normal; font-variant: normal;">and/or the model itself need to be adjusted for 120V 60Hz power grids.</span></span></span></span></span></span></span></span></span><br style="font-style: normal; font-variant: normal; font-weight: normal; letter-spacing: normal; line-height: normal; orphans: 2; text-align: -webkit-auto; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-size-adjust: auto; -webkit-text-stroke-width: 0px;" /></span></span></span></span></span></span></p>

Highlights

  • The analytical derivation of this Compact Fluorescent Lamps (CFL) model is presented in detail and its performance is discussed when predicting the current of a CFL designed to operate in a 120 V 60 Hz electrical system

  • The constant increase of non-linear loads in low voltage grids, the mass adoption of Compact Fluorescent Lamps (CFLs) and Light-Emitting Diode (LED) based lamps, aimed at reducing power demand and improving energy efficiency in lighting systems, has led to high levels of harmonic content in the current drawn from the supply system (Blanco & Parra, 2011) (Romero, Zini, & Ratta, 2011) (Ribeiro, et al, 2011)

  • This paper studies the performance in a 120 V 60 Hz power grid of a novel previously proposed CFL circuit-based model via simulations and measurements of CFLs with different power ratings under sinusoidal controlled voltage supply

Read more

Summary

Introduction

The constant increase of non-linear loads in low voltage grids, the mass adoption of Compact Fluorescent Lamps (CFLs) and Light-Emitting Diode (LED) based lamps, aimed at reducing power demand and improving energy efficiency in lighting systems, has led to high levels of harmonic content in the current drawn from the supply system (Blanco & Parra, 2011) (Romero, Zini, & Ratta, 2011) (Ribeiro, et al, 2011). The search for more and better models to assess and predict the collective harmonic impact of these loads on the low voltage network is currently a research topic (Salles, Jiang, Xu, Freitas, & Mazin, Oct. 2012). Several serious problems are caused by the harmonic currents flowing in the power system: overheating and overloading of conductors (especially neutrals), motors and transformers (increased losses); poor power factor and overloaded capacitor banks; undesired protection tripping and skin

Cesar Duarte Gualdrón
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.