Abstract
In this paper, we deal with a class of non-stationary multiresolution analysis and wavelets generated by certain radial basis functions. These radial basis functions are noted for their effectiveness in terms of “projection”, such as interpolation and least-squares approximation, particularly when the data structure is scattered or the dimension of ℝ s is large. Thus projecting a functionf onto a suitable multiresolution space is relatively easy here. The associated multiresolution spaces approximate sufficiently smooth functions exponentially fast. The non-stationary wavelets satisfy the Littlewood-Paley identity so that perfect reconstruction of wavelet decompositions is achieved. For the univariate case, we give a detailed analysis of the time-frequency localization of these wavelets. Two numerical examples for the detection of singularities with analytic wavelets are provided.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have