Abstract

In this paper we study some analytic properties of bi-free additive convolution, both scalar- and operator-valued. We show that using properties of Voiculescu's subordination functions associated to free additive convolution of operator-valued distributions, simpler formulas for bi-free convolutions can be derived. We use these formulas in order to prove several results about atoms of bi-free additive convolutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.