Abstract

()-dimensional non-linear optical waves through the coherently excited resonant medium doped with the erbium atoms can be described by a -dimensional non-linear Schrödinger equation coupled with the self-induced transparency equations. For such a system, via the Hirota method and symbolic computation, linear forms, one-, two- and N-soliton solutions are obtained. Asymptotic analysis is conducted and suggests that the interaction between the two solitons is elastic. Bright solitons are obtained for the fields E and P, while the dark ones for the field N, with E as the electric field, P as the polarization in the resonant medium induced by the electric field, and N as the population inversion profile of the dopant atoms. Head-on interaction between the bidirectional two solitons and overtaking interaction between the unidirectional two solitons are seen. Influence of the averaged natural frequency on the solitons are studied: (1) can affect the velocities of all the solitons; (2) Amplitudes of the solitons for the fields P and N increase with decreasing, and decrease with increasing; (3) With decreasing, for the fields P and N, one-peak one soliton turns into the two-peak one, as well as interaction type changes from the interaction between two one-peak ones to that between a one-peak one and a two-peak one; (4) For the field E, influence of on the solitons cannot be found. The results of this paper might be of potential applications in the design of optical communication systems which can produce the bright and dark solitons simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.