Abstract

Abstract In this article, the generalised nonlinear Schrödinger–Maxwell–Bloch system is investigated, which describes the propagation of the optical solitons in an optical fibre doped with two-level resonant impurities like erbium with the fourth-order dispersion taken into account. Bilinear forms are derived via the Hirota method, symbolic computation, and the auxiliary function. Bright solitons can be obtained for the complex envelope of the field and the measure of the polarisation for the resonant medium, while the dark ones have been deduced for the extant population inversion. Propagation of the one and two solitons is analysed with the results that the solitons keep their shapes unchanged after the interaction, except for the phase shifts, which means that the interaction is elastic. Velocities of the solitons decrease when the effect of discreteness and higher-order dispersion increases. For the bound-state solitons, which can be formed among the solitons at the same velocity, the period decreases when the effect of discreteness and higher-order dispersion increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.