Abstract

A simplified one-dimensional quasilinear diffusion equation describing the time evolution of collisionless ions in the presence of ion-cyclotron-resonance heating, sources, and losses is solved analytically for all harmonics of the ion cyclotron frequency. Simple time-dependent distribution functions which are initially Maxwellian and vanish at high energies are obtained and calculated numerically for the first four harmonics of resonance heating. It is found that the strongest ion tail of the resulting anisotropic distribution function is driven by heating at the second harmonic followed by heating at the fundamental frequency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.