Abstract

This paper is devoted to the homogenization of the quasilinear theory of the plasma turbulence described by the Vlasov–Poisson system. It is shown that the homogenization limit, in the sense of two-scale limit, of the distribution function satisfies the linear Vlasov–Poisson equations. Moreover, the limit distribution function can be decomposed into the mean and the fluctuation parts and the mean part (the equilibrium distribution function) is shown to be the solution of the nonlocal quasilinear velocity-space diffusion equation. We also investigate the Landau damping from the point of view of homogenization through the two-scale limit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.