Abstract

Using the Abstract Cauchy-Kowalewski Theorem we prove that the $b$-family equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic and it belongs to $H^s$ with $s > 3/2$, and the momentum density $u_0 - u_{0,{xx}}$ does not change sign, we prove that the solution stays analytic globally in time, for $b\geq 1$. Using pseudospectral numerical methods, we study, also, the singularity formation for the $b$-family equations with the singularity tracking method. This method allows us to follow the process of the singularity formation in the complex plane as the singularity approaches the real axis, estimating the rate of decay of the Fourier spectrum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.