Abstract

This paper considers the effect of excessive total pressure losses for heat transfer problems in fluid flows with a high circumferential swirl component. At the Institute of Jet Propulsion and Turbomachinery at RWTH Aachen University, a novel gas generator concept is under research. This design avoids some disadvantages of small gas turbines and uses a rotating combustion chamber. During the pre-design of the rotating combustion chamber using CFD tools, unexpected high total pressure losses were detected. To analyze this unknown phenomenon, a gas-dynamic model of the rotating combustion chamber has been developed to explain the unexpected high Rayleigh pressure losses. The derivation of the gas-dynamic model, the physical phenomenon related to the high total pressure losses in high-swirl combustion, the influencing factors, as well as thermodynamic interpretation of the Rayleigh pressure losses, are presented in this paper. The results presented here are of possible interest for a wide range of applications, since these fundamental findings can be transferred to all heat transfer problems in fluid flows with a high circumferential swirl component.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.