Abstract

AbstractWe give a new proof of the existence of analytic models of pseudo-Anosov maps. The persistence properties of Thurston's maps ensure that any Co-perturbation of them presents all their dynamical features. Using Lyapunov functions of two variables we are able to choose certain analytic perturbations which do not add any new dynamical behaviour to the original pseudo-Anosov map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.