Abstract

One link between the theory of quasicrystals and the theory of nonlinear dynamics is provided by the study of so-called trace maps. A subclass of them are mappings on a one-parameter family of 2D surfaces that foliate ℝ3 (and also ℂ3). They are derived from transfer matrix approaches to properties of 1D quasicrystals. In this article, we consider various dynamical properties of trace maps. We first discuss the Fibonacci trace map and give new results concerning boundedness of orbits on certain subfamilies of its invariant 2D surfaces. We highlight a particular surface where the motion is integrable and semiconjugate to an Anosov system (i.e., the mapping acts as a pseudo-Anosov map). We identify properties of symmetry and reversibility (time-reversal symmetry) in the Fibonacci trace map dynamics and discuss the consequences for the structure of periodic orbits. We show that a conservative period-boubling sequence can be identified when moving through the one-parameter family of 2D surfaces. By using generator trace maps, in terms of which all trace maps obtained from invertible two-letter substitution rules can be expressed, we show that many features of the Fibonacci trace map hold in general. The role of the Fricke character\(\hat I(x,y,z) = x^2 + y^2 + z^2 - 2xyz - 1\), its symmetry group, and reversibility for the Nielsen trace maps are described algebraically. Finally, we outline possible higher-dimensional generalizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.