Abstract

In their paper [12], Toda and the author have concerned themselves in the followingTheorem of Kuramochi. Let R be a hyperbolic Riemann surface of the class OHB(OHD, resp.). Then, for any compact subset K of R such that R−K is connected, R−K as an open Riemann surface belongs to the class OAB(OAD, resp.) (Kuramochi [4]).They have raised there the question as to whether there exists a hyperbolic Riemann surface, which has no Martin or Royden boundary point with positive harmonic measure and has yet the same property as stated in Theorem of Kuramochi, and given a positive answer to the Martin part of this question.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.