Abstract

We continue the study of a particle (atom, molecule) undergoing an unbiased random walk on the Sierpinski gasket, and obtain for the gasket and tower the eigenvalue spectrum of the associated stochastic master equation. Analytic expressions for recurrence relations among the eigenvalues are derived. The recurrence relations obtained are compared with those determined for two Euclidean lattices, the closed chain with an absorbing site and a finite chain with an absorbing site at one end. We check and confirm the internal consistency between the smallest eigenvalue and the mean walklength in each of the cases studied. Attention is drawn to the relevance of the results obtained to a problem of electron transfer in proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.