Abstract

The exact analytic expression for the mean time to absorption (or mean walk length) for a particle performing a random walk on a finite Sierpinski gasket with a trap at one vertex is found to be T((n))=[3(n)5(n+1)+4(5(n))-3(n)]/(3(n+1)+1) where n denotes the generation index of the gasket, and the mean is over a set of starting points of the walk distributed uniformly over all the other sites of the gasket. In terms of the number N(n) of sites on the gasket and the spectral dimension d of the gasket, the precise asymptotic behavior for large N(n) is T((n))-->1/3(2N(n))(2/d)-N1.464. This serves as a partial check on our result, as it is (a) intermediate between the known results T-N2 (d=1) and T-N ln N (d=2) for random walks on d-dimensional Euclidean lattices and (b) consistent with the known result for the asymptotic behavior of the mean number of distinct sites visited in a random walk on a fractal lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.