Abstract

We {\it analytically} compute, to the eight-and-a-half post-Newtonian order, and to linear order in the mass ratio, the radial potential describing (within the effective one-body formalism) the gravitational interaction of two bodies, thereby extending previous analytic results. These results are obtained by applying analytical gravitational self-force theory (for a particle in circular orbit around a Schwarzschild black hole) to Detweiler's gauge-invariant redshift variable. We emphasize the increase in \lq\lq transcendentality" of the numbers entering the post-Newtonian expansion coefficients as the order increases, in particular we note the appearance of $\zeta(3)$ (as well as the square of Euler's constant $\gamma$) starting at the seventh post-Newtonian order. We study the convergence of the post-Newtonian expansion as the expansion parameter $u=GM/(c^2r)$ leaves the weak-field domain $u\ll 1$ to enter the strong field domain $u=O(1)$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call