Abstract
We extend the analytical determination of the main radial potential describing (within the effective one-body formalism) the gravitational interaction of two bodies beyond the 4th post-Newtonian approximation recently obtained by us. This extension is done to linear order in the mass ratio by applying analytical gravitational self-force theory (for a particle in circular orbit around a Schwarzschild black hole) to Detweiler's gauge-invariant redshift variable. By using the version of black hole perturbation theory developed by Mano, Suzuki and Takasugi, we have pushed the analytical determination of the (linear in mass ratio) radial potential to the 6th post-Newtonian order (passing through 5 and 5.5 post-Newtonian terms). In principle, our analytical method can be extended to arbitrarily high post-Newtonian orders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.