Abstract
A fully analytic statistical formalism does not yet exist to describe radio-wavelength measurements of linearly polarized intensity that are produced using rotation measure synthesis. In this work we extend the analytic formalism for standard linear polarization, namely that describing measurements of the quadrature sum of Stokes Q and U intensities, to the rotation measure synthesis environment. We derive the probability density function and expectation value for Faraday-space polarization measurements for both the case where true underlying polarized emission is present within unresolved Faraday components, and for the limiting case where no such emission is present. We then derive relationships to quantify the statistical significance of linear polarization measurements in terms of standard Gaussian statistics. The formalism developed in this work will be useful for setting signal-to-noise ratio detection thresholds for measurements of linear polarization, for the analysis of polarized sources potentially exhibiting multiple Faraday components, and for the development of polarization debiasing schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.