Abstract
An analytical model for a dipole-bound anion (DBA) is proposed based on the exactly solvable three-dimensional Schroedinger equation for the excess electron bound by dipole potential of the parent neutral molecule (NM) in the Born-Oppenheimer approximation. The model gives reasonable analytical approximation for the dependence of the DBA binding energy on the NM dipole moment previously found numerically by many authors. The cross section of one-photon photodetachment of DBA is calculated in explicit analytical form. In the limit of high photon frequency, {omega}, the calculated cross-section displays {approx}{omega}{sup -2} behavior, which agrees perfectly with the experimental data [Bailey et al., J. Chem. Phys 104, 6976 (1996)]. At the threshold, the cross section demonstrates Gailitis-Damburg oscillations. Numerical dependence is provided for the maximal value of the cross section as a function of the NM dipole moment and the binding energy of the excess electron.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have