Abstract

The increased penetration of wind power introduces more operational changes of critical corridors and the traditional time-consuming transient stability constrained total transfer capability (TTC) operational planning is unable to meet the real-time monitoring need. This paper develops a more computationally efficient approach to address that challenge via the analytical deep learning-based surrogate model. The key idea is to resort to deep learning for developing a computationally cheap surrogate model to replace the original time-consuming differential-algebraic constraints related to TTC. However, the deep learning-based surrogate model introduces implicit rules that are difficult to handle in the optimization process. To this end, we derive the Jacobian and Hessian matrices of the implicit surrogate models and finally transfer them into an analytical formulation that can be easily solved by the interior point method. Surrogate modeling and problem reformulation allow us to achieve significantly improved computational efficiency and the yielded solutions can be used for operational planning. Numerical results carried out on the modified IEEE 39-bus and 68-bus systems demonstrate the effectiveness of the proposed method in dealing with complicated TTC constraints while balancing the computational efficiency and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.