Abstract
We consider the problem of optimally controlling the reorientation of a spacecraft (SC) from an arbitrary initial angular state into a given final angular position. We study the case when the minimized functional joins, in the given proportion, the time spent and the integral of the squared modulus of the angular momentum on the reorientation of a SC. The problem is solved in a kinematic setting. We consider two versions of the problem of the optimal rotation of a SC, with bounded and unbounded control. Using the necessary optimality conditions in the form of the Pontryagin maximum principle and the quaternion method for solving control problems on the motion of spacecrafts, we obtain an analytical solution of the posed problem. The solution of the problem is based on the quaternionic differential equation relating the angular momentum vector of a SC with the orientation quaternion of the related coordinate system. We present formalized equations and give computational expressions for constructing the optimal control program. We state the control law as an explicit dependence of the control variables on the phase coordinates. Using the transversality condition as a necessary optimality condition, we determine the maximal value of the modulus of the angular momentum for the optimal motion. For a dynamically symmetric SC, the problem of reorientation in space is solved completely: we obtain the dependences for the optimal law of the change of the angular momentum vector as explicit time functions. We give the results of the mathematical modeling of the motion for optimal control which demonstrate the practical realizability of designed algorithm for controlling the spatial orientation of a SC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computer and Systems Sciences International
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.