Abstract
We compute the perturbative partition functions for gauge theories with eight supersymmetries on spheres of dimension d ≤ 5, proving a conjecture by the second author. We apply similar methods to gauge theories with four supersymmetries on spheres with d ≤ 3. The results are valid for non-integer d as well. We further propose an analytic continuation from d = 3 to d = 4 that gives the perturbative partition function for an mathcal{N} =1 gauge theory. The results are consistent with the free multiplets and the one-loop β-functions for general mathcal{N} = 1 gauge theories. We also consider the analytic continuation of an mathcal{N} = 1 preserving mass deformation of the maximally supersymmetric gauge theory and compare to recent holographic results for mathcal{N} = 1∗ super Yang-Mills. We find that the general structure for the real part of the free energy coming from the analytic continuation is consistent with the holographic results.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have