Abstract
We investigate the performance of highly anisotropic nanostructured thin film ultrathin-layer chromatography (UTLC) media with porosity and architecture engineered using the glancing-angle deposition (GLAD) process. Our anisotropic structures resemble nanoblades, producing channel-like features that partially decouple analyte migration from development direction, offering new separation behaviours. Here we study GLAD-UTLC plate performance in terms of migration distance, plate number, retention factor and a figure of merit specific to GLAD-UTLC, track deviation angle. Migration distances increase with porosity by a factor of two for all feature orientations (up to a maximum of 22 mm) over the range of porosities considered in this study. Plate numbers approaching 1100 are observed for GLAD-UTLC plates when the nanoblade features are aligned with the development direction. We present a theoretical model describing mobile phase flow in anisotropic GLAD-UTLC media, and find good agreement with experimental results. Our plates provide channel features that reduce transverse spot broadening while providing the wide pores required for rapid migration and high separation performance. These improvements may enable a greater number of parallel separations on miniaturized GLAD-UTLC plate formats. Their small sizes should also make them compatible with the Office Chromatography concept in which office peripherals (inkjet printers and flatbed scanners) replace conventional TLC instruments. Equipped with a better understanding of the unique GLAD-UTLC elution behaviours, we expect to further improve performance in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.