Abstract

As part of increasing research in the field of separation science, there have been many efforts to undertake planar chromatography with more efficient separation and better resolution in the shortest period of time, together with a specificity and a capability to identify more precisely an unknown compound present in a mixture. Ultra-thin layer chromatography (UTLC) is a modern technique which gives separation within 10–30 mm and development in just 1–6 min, with the consumption of less solvent. The stationary phase of UTLC is made up of a silica gel monolithic layer of 10 μm thickness having 3- to 4-nm mesopores and 1- to 2-μm macropores. Glancing angle deposition (GLAD)-UTLC is a modification of UTLC which gives separation within 15 mm distance and in less than 2 min. Anisotropic media of GLAD UTLC gives a unique migration direction effect. UTLC atmospheric pressure–matrix-assisted laser desorption ionizer–mass spectrometery (UTLC-AP-MALDI-MS) is a choice of technique for the identification of an unknown compound in a mixture or an impure form. ULTC-AP-MALDI-MS allows the fast changing of plates, produces more intact protonated molecules, less fragmentation and less entry of chromatographic material, and yielding less complicated spectra than the vacuum condition. Thus, UTLC is a useful technique for very rapidly giving the separation and identification of new components present in mixtures. This review provides a brief overview of UTLC, the stationary phases used for UTLC, and the detection options and applications of UTLC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.