Abstract

Fractal and fractal-rate stochastic point processes (FSPPs and FRSPPs) provide useful models for describing a broad range of diverse phenomena, including electron transport in amorphous semiconductors, computer-network traffic, and sequences of neuronal action potentials. A particularly useful statistic of these processes is the fractal exponent α, which may be estimated for any FSPP or FRSPP by using a variety of statistical methods. Simulated FSPPs and FRSPPs consistently exhibit bias in this fractal exponent, however, rendering the study and analysis of these processes non-trivial. In this paper, we examine the synthesis and estimation of FRSPPs by carrying out a systematic series of simulations for several different types of FRSPP over a range of design values for α. The discrepancy between the desired and achieved values of α is shown to arise from finite data size and from the character of the point-process generation mechanism. In the context of point-process simulation, reduction of this discrepancy requires generating data sets with either a large number of points, or with low jitter in the generation of the points. In the context of fractal data analysis, the results presented here suggest caution when interpreting fractal exponents estimated from experimental data sets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.