Abstract

A two dimensional vertical axis wind turbine's model was established in this paper, and two dimensional unsteady incompressible N-S equations and Realizable kɛ− turbulence model were solved with software FLUENT. SIMPLC algorithm was applied, combined with the sliding grid technology; the influence of rotational speed to the flow structure of vertical axis wind turbine was discussed. The results showed that, the rotation of wind turbine had significant influence on wake, and higher the rotational speed, the greater reduction of the wake velocity. The wake velocity restored gradually away from the rotational part. There was much larger turbulent kinetic energy near the tail of the wind turbine's blade. The value of turbulent kinetic energy reduced gradually away from the rotational part, and the flow restored the stratospheric state gradually. With the increase of wind turbine's rotational speed, the value of turbulent kinetic energy in calculation domain increased too. The results showed that the flow structure of vertical axis wind turbine's rotational process could be revealed effectively by numerical simulation, provided theoretical reference for the engineering design of the vertical axis wind turbine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.