Abstract
Abstract In this work, an attempt has been made to analyze the influence of pathological changes in eye globe dimensions towards the mechanical responses of optic nerve head tissues during eye adductions. For this study, a 3D baseline model geometry of posterior ocular tissues has been constructed. The eye globe diameters of the model are modified to mimic the changes in ocular globe morphology in control, glaucoma, myopia and glaucoma with myopia conditions. Adductions are simulated for each modified model as the rotation of the globe from 1o to 10o in steps of 1o. von Mises strain in lamina cribrosa (LC) and posterior displacement of LC are estimated. Results show that strains developed in LC and its posterior displacement are higher in diseased eyes compared to healthy eyes. It appears that eyes with higher axial length and globe anisotropy are more susceptible to optic nerve head damage. This study might be extended to assess the progression of glaucomatous optic neuropathy.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have