Abstract

The layout dependence on ESD robustness of NMOS and PMOS devices has been experimentally investigated in details. A lot of CMOS devices with different device dimensions, layout spacings, and clearances have been drawn and fabricated to find the optimized layout rules for electrostatic discharge (ESD) protection. The main layout parameters to affect ESD robustness of CMOS devices are the channel width, the channel length, the clearance from contact to poly-gate edge at drain and source regions, the spacing from the drain diffusion to the guard-ring diffusion, and the finger width of each unit finger. Non-uniform turn-on effects have been clearly investigated in the gate-grounded large-dimension NMOS devices by using EMMI (EMission MIcroscope) observation. The optimized layout parameters have been verified to effectively improve ESD robustness of CMOS devices. The relations between ESD robustness and the layout parameters have been explained by both transmission line pulsing (TLP) measured data and the energy band diagrams.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.