Abstract

Experiment shows that thin film bulk acoustic resonator (FBAR) is feasible to detect gamma irradiation, but the sensing mechanism is not studied deeply. For this problem, different sensing mechanisms are proposed to explain the resonance frequency shift after gamma irradiation according to two different FBAR structures. One FBAR structure is four - layers stacked (metal layer - piezoelectric layer - oxide layer - metal layer). After gamma irradiation, a voltage will be formed in the radiation sensitive layer (oxide layer), which is equivalent to impose a DC voltage to the piezoelectric layer that makes resonant frequency shift. There is a semiconductor layer between oxide layer and piezoelectric layer in the other FBAR structure, which is the difference between the two structures. A voltage formed in the oxide layer after irradiation will change the surface potential of the semiconductor and then change the space charge layer capacitor in semiconductor that makes the resonant frequency shift. The results of two mechanisms are obtained by simulation and compared with those in related literature, it is found that the trends and magnitudes of frequency shift are the same, so the two mechanisms are feasible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.