Abstract
In order to test the effects of hydrothermal and clinically related aging on zirconia, monolithic disc-shaped samples were milled, sintered and polished from two high translucency zirconia , 3 mol % (HT) and 5 mol % (XT). Samples were divided into three groups: non-aged: control (CT); hydrothermal aging (HA - autoclave aging for 12.5 h at 134 °C, 2 bar); in vitro clinically-related aging (CRA - chewing simulation for 1.2 million cycles followed by 50,000 thermocycles and acidic exposure in HCl, pH 1.2, for 15 h). Mechanical properties (flexural strength, fatigue, hardness and elastic modulus) were analyzed and compared using the analysis of variance (at a level of 5% significance). In vitro clinically-related aging significantly decreased fatigue strength of XT zirconia with no effects on HT zirconia. Surface hardness and elastic modulus were not affected (p = 0.591 and 0.392 respectively). Hydrothermal aging increased fatigue strength for both materials and decreased the surface hardness and modulus of HT zirconia (p ≤ 0.001). Hydrothermal aging and in vitro clinically-related aging have different effects on the mechanical properties of zirconia , when used to simulate five years of clinical service.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.