Abstract

The aim of the study was to test whether the filler composition of resin composites influences their flexural strength and modulus of elasticity. Flexural strength and modulus of elasticity were obtained through a three-point bending test. Twelve bar shaped specimens of 5 commercially available composites--Supreme (3M/ESPE), a universal nanofilled composite; Esthet-X (Dentsply), Z-250 (3M/ESPE), Charisma (Heraeus Kulzer), universal hybrid composites; and Helio Fill (Vigodent), a microfine composite--were confectioned according to the ISO 4049/2000 specifications. The test was performed after a 7-days storage time using a universal test machine with a crosshead speed of 1 mm/min. The filler weight content was determined by the ashing technique. The data obtained on the mechanical properties were submitted to ANOVA and Tukey test (p < 0.05). Pearson's correlation test was used to determine the correlation between the filler content and the mechanical properties. A weak but significant correlation between the mechanical properties evaluated and the filler weight content was observed (p < 0.000). The microfine composite presented the lowest filler weight and the lowest mechanical properties. Statistically different flexural strength and modulus of elasticity results were observed among the universal hybrid composites. The nanofilled composite presented intermediary results. Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested.

Highlights

  • Since the introduction of dental resin-based composites as posterior restorative materials, their clinical behavior has been dictated by their mechanical properties

  • Within the limitations of this in vitro study, it could be concluded that the filler content significantly interfered in the flexural strength and modulus of elasticity of the composites tested

  • Flexural strength and elasticity modulus Twelve bar shaped specimens were made of each composite (Table 1), using a metallic mold with the dimensions specified by the International Organization for Standardization (ISO) 4049/2000 specification (25 mm x 2 mm x 2 mm)

Read more

Summary

Introduction

Since the introduction of dental resin-based composites as posterior restorative materials, their clinical behavior has been dictated by their mechanical properties. Resin-based composites mechanical properties are mainly dependent upon their microstructure and composition. The microstructural characteristics involve the distribution of filler particles in the bulk, the morphology of these filler particles and the presence of pre-existing cracks and voids. These characteristics are directly related to the composition of the composite

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call