Abstract

Abstract: In remote electric vehicle charging frameworks utilizing inductive power transfer (IPT), power electronic converters assume a basic part in decreasing size and cost, as well as boosting the proficiency of the whole framework. As of late, analysts have led huge examination studies to work on the exhibition of power transformation frameworks, including power converter topologies and control plans. Incorporated On-Board Battery Chargers (OBC) have been acquainted as ideal arrangement with increase of electric vehicle (EV) market penetration and limit the general expense of EVs. OBCs are by and large arranged into triphasic and monophasic types with unidirectional or bidirectional power stream. Existing electric vehicle (EV) chargers utilize a hard-core non-linear diode bridge-rectifier (BR) to exploit the DC volt at the contribution of the DC converter and acquaint quality of the power is a counted as a problem with the AC input. These problems insist improvement in Power Quality for existing battery charger for this purpose the bridgeless Cuk Converter is used with the flyback converter. Cuk Converter used single diode and switch and provide additional advantage like reduction in the switch volt-stress and higher efficiency equated to the other conventional bridgeless (BL) converters. Similarly, bridgeless isolated Zeta-Luo converter with PF correction is also used. The Zeta and Luo is functioned for the half cycle of the supply individually and give the benefits of the both topologies. In this paper BL Zeta, BL Cuk, BL Buck-Boost, BL Luo, BL Single Ended Primary Inductance Converter (BL SPIC), and Canonical Switched Cell (CSC) converters are reviewed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call