Abstract

Because the underwater channel environment is complicated, it is difficult to do an actual experiment in the ocean to analyze the performance of underwater wireless optical communication (UWOC) systems. In this study, the spot-expansion characteristics and time-domain broadening characteristics of underwater wireless optical signals are simulated and analyzed by a Monte Carlo statistical method. Thus, what we believe is an improved underwater channel transmission-attenuation model and time-domain broadening model based on UWOC are proposed, so the transmission distance characteristics of the UWOC system are obtained by combining the system parameters, and the transmission-rate characteristics can be analyzed by using the Shannon-Hartley theorem. The results show that the transmission distance is linear with the receiver sensitivity, and the transmission rate decays exponentially with the transmission distance and is limited by the receiver sensitivity in the UWOC system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.